Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians

نویسندگان

  • Jamie Voyles
  • Leah R Johnson
  • Cheryl J Briggs
  • Scott D Cashins
  • Ross A Alford
  • Lee Berger
  • Lee F Skerratt
  • Rick Speare
  • Erica Bree Rosenblum
چکیده

Understanding how pathogens respond to changing environmental conditions is a central challenge in disease ecology. The environmentally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease chytridiomycosis, has spread globally causing amphibian extirpations in a wide variety of climatic regions. To gain an in-depth understanding of Bd's responses to temperature, we used an integrative approach, combining empirical laboratory experiments with mathematical modeling. First, we selected a single Bd isolate and serially propagated two lineages of the isolate for multiple generations in two stable thermal conditions: 4°C (cold-adapted lineage) and 23°C (warm-adapted lineage). We quantified the production of infectious zoospores (fecundity), the timing of zoospore release, and zoospore activity in reciprocal temperature transplant experiments in which both Bd lineages were grown in either high or low temperature conditions. We then developed population growth models for the Bd lineages under each set of temperature conditions. We found that Bd had lower population growth rates, but longer periods of zoospore activity in the low temperature treatment (4°C) compared to the high temperature treatment (23°C). This effect was more pronounced in Bd lineages that were propagated in the low temperature treatment (4°C), suggesting a shift in Bd's response to low temperature conditions. Our results provide novel insights into the mechanisms by which Bd can thrive in a wide variety of temperature conditions, potentially altering the dynamics of chytridiomycosis and thus, the propensity for Bd to cause amphibian population collapse. We also suggest that the adaptive responses of Bd to thermal conditions warrant further investigation, especially in the face of global climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host.

Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that causes chytridiomycosis in amphibians. Only named in 1999, Bd is a proximate driver of declines in global amphibian biodiversity. The pathogen infects over 350 species of amphibians and is found on all continents except Antarctica. However, the processes that have led to the global distribution of Bd and the occurrence of chytridiomyc...

متن کامل

Host Identity Matters in the Amphibian-Batrachochytrium dendrobatidis System: Fine-Scale Patterns of Variation in Responses to a Multi-Host Pathogen

Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytriu...

متن کامل

Interactions between Batrachochytrium dendrobatidis and its amphibian hosts: a review of pathogenesis and immunity.

The fungus Batrachochytrium dendrobatidis (Bd) causes a lethal skin disease of amphibians, chytridiomycosis, which has caused catastrophic amphibian die-offs around the world. This review provides a summary of host characteristics, pathogen characteristics and host-pathogen responses to infection that are important for understanding disease development.

متن کامل

Minimum lethal concentration of sodium hypochlorite for the amphibian pathogen Batrachochytrium dendrobatidis

Sodium hypochlorite (NaOCl) is the active ingredient in household bleach and is commonly used as a disinfectant to clean equipment contaminated by the amphibian pathogen Batrachochytrium dendrobatidis (Bd) in lab husbandry and field studies. We conducted a series of replicated exposure trials using a single Global Pandemic Lineage Bd isolate from Panama (JEL 310) and concentrations of NaOCl ran...

متن کامل

Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians

Virulence of infectious pathogens can be unstable and evolve rapidly depending on the evolutionary dynamics of the organism. Experimental evolution can be used to characterize pathogen evolution, often with the underlying objective of understanding evolution of virulence. We used experimental evolution techniques (serial transfer experiments) to investigate differential growth and virulence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012